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Self-assembled alkyl monolayers on &ill) were exposed to low doses of slow~6.6

X 10° m/s~0.3vgqny), highly charged ions, like X&' and TH®". Atomic force microscope images
show craters from single ion impacts with diameters of 50—63 nm. Emission of secondary ions by
highly charged projectiles was monitored by time-of-flight secondary ion mass spectrometry
(TOF-SIMS. TOF-SIMS data give insights into the dependence of electronic desorption effects on
the projectile charge state. We discuss the potential of highly charged projectiles as tools for
materials modification on a nanometer scale. 1998 American Vacuum Society.
[S0734-211%98)13306-1

I. INTRODUCTION Il. EXPERIMENT

Recent advances in ion source technology have made Highly charged ions were extracted from the electron

slow (10'm/s<v<10® m/s), very highly charged ions beam ion trap(EBIT) at Lawrence Livermore National
(HCI)—in principal up to J2*—available for ion surface Laboratory. The experimental setup for ion extraction and

HCI based time-of-flight secondary ion mass spectrometry

interaction studie$=® The characteristic features of the inter- / 186 -
(TOF-SIMS has previously been describ&d:® AFM im-

action of such highly charged ions with solids arise from . o .
their very rapid neutralization. Hundreds of keV of electronicages were obtainedx situin noncontact, constant height
' mode with an Autoprobe L$Park Scientific Instrumenks

excitation energy are deposited within 10 to 20 fsin a Sma”AFM data were calibrated using a micron grating and previ-
target volumé:® Power densities are in the order of'10 51y measured hillock structures on mica. Self-assembled
Wicn. Copious electron emissidfiis followed by emission  ajkyl monolayers were deposited on(Eil).!* SAMs have

of high yields of secondary iof§ and neutral$:® Sputter  peen found to be stable in air over extended periods of time.
yields for metal oxides and semiconductors increase stronglgH;(CH,),, an untreated octene chai®AM 1), and octene

as a function of projectile charge state or potential energychains which had been chlorinated, sulfonamidated, and
respectively. For undoped GaA$00), over 1000 atoms are functionalized with Ck-phenol (SAM 2), were exposed to
ejected per TR projectile® Resulting from intense, ul- Xe*" and A®** ions with velocities of~6.6x 10> m/s (0.3
trafast electronic excitation, sputter yields are largely inde?sond- Corresponding kinetic energies were7§87 and 441
pendent of impact energy and primary ions can be used to ke\/lzrespectlvely. Total 1on doses werel0” cm  or ~10
modify surfaces at very low impact energies. Impact energieé"m , low enough _to void overlap of defects created by
are limited by the image charge acceleration-tb keV (for more than one HCI impact.

U®* on carbon® The effect of highly charged ion impacts

on materials topography was investigated first with mica tar-

gets where characteristic hillocks were observed after expo-

sure to HCI Atomic force microscope(AFM) images |Il. RESULTS AND DISCUSSION

showed structures;-0.5 nm high and with a base diameter
of ~15 nm for Xé*" projectiles'®!? Both high ablation

: o after exposure to X&' is shown in Fig. 1. The average
rates and single ion induced topography changes mark pro_"&'rater diameter is 5&/—10 nm. The root mean square

ising effects for the development of novel materials mOdif"roughness of SAM 1 was 0.5 nm. Crater diameters on the
cation techniques using slow, very highly charged ionsgnciionalized SAM 2 after exposure to & were at aver-
(HCI). In this article we report on studies of the interaction age 63r/—14 nm. Typical noncontact tip radii were 70 nm
of HCI with self-assembled alkyl monolayeXSAM) on  and crater depths could not be determined with confidence
Si(111).® AFM images of SAMs after exposure to ¥¢  from noncontact AFM data. The apparent crater depth was 3

A noncontact AFM image from the untreated octene SAM

and ALP*" show craters with diameters of 50-60 nm. nm, much larger than the thickness of the SAMs. The latter
was ~0.8 nm for the octene chain and1.3 nm for SAM
aE|ectronic mail: SCHENKEL2@LLNL.GOV 213
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Fic. 1. Noncontact atomic force microscope image of an octene monolayel 0.0 PP
on Si(111) after exposure to X&', The average diameter of impact craters
is 51+/—10 nm. mass (Da)

Fic. 3. Time-of-flight spectra of positive secondary ions desorbed from a

) ) o _ HC=CH-phenol monolayer on Si111) by Xe'®", Xe%*** (dashed, and
We have monitored secondary ion emission from highlyTh’** projectiles.

charged ion impacts by TOF-SIMS. Individual HCI trigger a

start cycle by emission of electrongor negativey and

protons'® (for positive3. Sequentially arriving heavier sec- dominated by C. The mass resolution of the 10 cm long,
ondary ions are detected as stops in a multistop timing andinear TOF spectrometer was insufficient to resolve contribu-
lyzer. A highly charged ion based TOF-SIMS spectrum oftions from molecular ions CQ C;H,, etc. from the main
negative secondary ions emitted from SAM 1 by*Xeions  silicon isotope. Future experiments will be conducted using a
is shown in Fig. 2. 1®ions impinged on the target for accu- reflectron time-of-flight spectrometer. The lowest charge
mulation of the spectrum. Characteristic hydrocarbon chainstate ion, X&**, emits only insignificant amounts of‘Gand
reflect desorption and fragmentation of the octene chain i£2H, ions and the spectrum is dominated by mass 28 u ions.
the impact event. The small peak at mass 28 u is likely tdNe interpret these as stemming from collisional sputtering of
represent Si from the substrate. The number of negativethe silicon substrate. Increasing the projectile charge to
molecular ions detected per %& impact is 0.08. The detec- Xe3?* and TH®*, yields very strong increases of molecular
tion efficiency of the linear TOF-SIMS spectrometer with ion yields from the SAM and of mass 28 u ions. The obser-
annular detector is~0.1-0.15. lonization probabilities for vation of craters following exposure to very highly charged
positive and negative secondary ions emitted from SAMdons is consistent with this observation of high yields of mo-
under HCI bombardment are currently unknofvim Fig. 3  lecular ions and contributions from the silicon substrate. Our
we show the region around mass 28 u in positive secondarjpterpretation is that sufficiently highly charged ions damage
ion spectra for three projectiles, i (v=5x10° m/9. and desorb material from the alkyl monolayers, forming the
Xe3%* (v =4.3x 10° m/9) and Xé%" (v=2.4x10° m/s). The  observed craters with areas of a few thousand square nanom-
target was a HE CH-phenol SAM on S{111) with a thick-  eters. The crater size gives a lower limit of the area damaged
ness of~0.4 nm. Spectra for both X&" and TH®" are and chemically altered by individual highly charged ion im-
pacts. For X&' and SAM 1 the damage cross section is
=2x10 cn?. Xe'® does not carry enough electronic ex-
citation energy to efficiently desorb the SAM directly, while
the combined effect of kinetic energy loss and de-excitation
damage the SAM in the impact area. In Fig. 4, we show the
increase of positive secondary ion production from SAM 2
as a function of projectile charge state Projectiles were
Xel0t320.41% “Ay89t and TH3' with kinetic energies of 4
keVx(q. Positive secondary ion yields are largely indepen-
dent of projectile velocity for velocities ranging from *Ltb

10° m/s>7 AFM studies of a critical threshold excitation
strength(i.e., projectile charge or potential eneyggquired

for crater formation in SAMs are in progress.

counts / channel

75 e 105 120 .135. ';150 IV. OUTLOOK

mass (Da) The direct removal of a layer of material from a silicon
) ) . . substrate over an area of a few thousand square nanometers
Fic. 2. Time-of-flight secondary ion mass spectrum of negative secondary . . . .
ions from an octene monolayer on @il1). Primary ions were X&* witha ~ could be employed as a direct write processing step in the

kinetic energy of 410 keV. fabrication of deep submicron devices. Having presented
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S ' ' ' ' ' T V. SUMMARY
= 054 1 ;
5 | E} | Self-assembled alkyl monolayers on Qill) were ex-
3 posed to slow, very highly charged ions. Noncontact AFM
£ 044 — : : : : :
3 images show craters from single ion impacts. Crater diam-
5 eters are 51/—10 nm for Xé** impact on octene chains on
§ 0.3 . Si(111). Highly charged ion based secondary ion mass spec-
kS trometry gives additional evidence for the efficient removal
S 02 $ 4 of alkyl layers from the silicon substrate by electronic de-
© . . . - .
S | ) sorption. We discuss the current availability of highly
§ 01 * i charged ions as tools for deep submicron processing.
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